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A preliminary investigation is made of possible applications in quantum theory of the
topos formed by the collection of all M-sets, where M is a monoid. Earlier results on
topos aspects of quantum theory can be rederived in this way. However, the formalism
also suggests a new way of constructing a ‘neo-realist’ interpretation of quantum theory
in which the truth values of propositions are determined by the actions of the monoid
of strings of finite projection operators. By these means, a novel topos perspective is
gained on the concept of state-vector reduction.

KEY WORDS: quantum theory; topos; monoid; state-vector reduction.

1. INTRODUCTION

The goal of quantum cosmology is to describe in quantum terms the
physical universe in its entirety. As a field of study, quantum cosmology
is usually construed as a branch of quantum gravity, although some of
its most important questions transcend any particular approach to the latter
subject.

In this context, it is noteworthy that all the major approaches to quan-
tum gravity assume more or less the standard quantum formalism, both in re-
gard to its mathematical form and to its interpretative framework. Whether
such an assumption is justified is debatable, and I have argued elsewhere that,
in particular, the a priori assumption of a continuum field of numbers (real
or complex) would be problematic in a theory where space and time are not
representable by a smooth manifold (Isham, 2003). Indeed, it may well be
that the entire quantum formalism is only valid in the atomic and nuclear
realms, and that something entirely new is needed at the scale of the Planck
length.

Nevertheless, in the present paper I shall assume that the standard mathemat-
ical formalism of quantum theory is correct and then ask the recurrent question of
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whether this formalism can yield an interpretation that lies outside the familiar in-
strumentalism of the standard approach with its emphasis on measurements made
by an observer who exists ‘outside’ the system. That one does not wish to invoke
an external observer is easy to understand in quantum cosmology.

A simple realist philosophy would aspire to associate with each state |ψ〉
a definite value for each physical quantity A; equivalently, to each proposition
of the form “A ∈ �” (signifying that the physical quantity A has a value that
lies in the range � of real numbers) there would be associated a truth value
V |ψ〉(A ∈ �) that is either 1 (true) or 0 (false). However, the famous Kochen–
Specker theorem (Kochen and Specker, 1967) prohibits the existence of any
such valuation, and, for those interested in quantum cosmology, this leads to
the major challenge of finding a interpretation of the quantum formalism that is
non-instrumentalist but which, nevertheless, does not rest on simple ‘true-false’
valuations.

One possible response to this challenge is to use topos theory. A topos is
a category (so there are objects, and arrows from one object to another) with
the special property that, in certain critical respects, it behaves like the category
of sets (MacLane and Moerdijk, 1992). In particular, just as normal set theory is
intimately associated with Boolean algebra (the ‘Venn diagram’ algebra of subsets
of a set is Boolean) so a topos is associated with a more general algebra connected
to the sub-objects of objects in the topos.

Concomitantly, in topos theory, one encounters situations in which propo-
sitions can be only ‘partly’ true. The associated truth values lie in a larger set
than {0, 1}, but still maintain the distributive character of classical logic. More
precisely, the truth values in a topos lie in what is known as a ‘Heyting algebra’,
which is a generalisation of the Boolean algebra of classical logic: in particular, a
Heyting algebra is distributive. The main difference, however, is that, in a Heyting
algebra, the law of excluded middle may no longer hold. In other words, there
may be elements, P , of the logic such that P ∨ ¬P < 1 where, here, ‘<’ means
‘strictly less than’ in the partial ordering associated with the logic. This situation
is typical of so-called ‘intuitionistic logic’ and has been much studied by mathe-
maticians concerned with the formal foundations of their subject. The important
thing about a logic of this type is that it forms a genuine deductive system—and,
as such, can be used as a foundation for mathematics itself—provided only that
proof by contradiction is not allowed.

The notion of a proposition being only ‘partly true’, seems to fit rather well
with the fuzzy picture of reality afforded by quantum theory, and the possibility
of seriously applying topos ideas to this subject is very intriguing. One attempt,
that places much emphasis on the use of generalised truth values, can be found
in a series of papers by the author and collaborators (Butterfield and Isham,
1999, 2002; Hamilton et al., 2000; Isham, 2005; Isham and Butterfield, 1998).
The fundamental observation in this approach is that if we have a proposition
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“A ∈ �” for which1 0 < Prob(A ∈ �; |ψ〉) < 1 then although we cannot say that
“A ∈ �” is either true or false (which would correspond to Prob(A ∈ �; |ψ〉) = 1
and Prob(A ∈ �; |ψ〉) = 0 respectively), nevertheless this proposition may im-
ply other propositions to which the formalism assigns probability 1, and which
therefore can be said unequivocally to be true. What is not at all obvious, but
is nevertheless the case, is that the collections of all such propositions form a
distributive logic, and therefore it is possible to define the truth value of the propo-
sition “A ∈ �” to be the set of all propositions P that are implied by “A ∈ �”
and which are such that Prob(P ; |ψ〉) = 1.

In detail, there is considerably more to the idea than just this, and in the
original paper (Isham and Butterfield, 1998), we began by introducing the notion
of coarse-graining in which the proposition “A ∈ �” is replaced by the ‘coarser’
proposition2 “f (A) ∈ f (�)” for some function3 f : IR → IR. We then ascribed to
“A ∈ �” the truth value4

V |ψ〉(A ∈ �) := {fA(H) : Â → B̂ | Prob(f (A) ∈ f (�); |ψ〉) = 1}. (1.1)

In this approach, the bounded, self-adjoint operators onH are viewed as the objects
in a category A(H), and a function f : IR → IR defines an arrow from Â to B̂

if B̂ = f (Â). This is the significance of the notation in Eq. (1.1) where the right
hand side is to be regarded as a ‘sieve’5 of arrows on the object Â in the category
A(H). One of the fundamental results in topos theory is that, in any category,
the collection of sieves on an object form a Heyting algebra, and hence Eq. (1.1)
assigns (contextualised) multi-valued truth values in quantum theory. The actual

1 The quantity Prob(A ∈ �; |ψ〉) denotes the quantum mechanical probability that the proposition
“A ∈ �” is ‘true’ when the quantum state is |ψ〉. In the standard instrumentalist interpretation(s) of
quantum theory, the proposition being ‘true’ means that if a measurement is made of the physical
quantity A then the result will definitely be found to lie in � ⊂ IR. For a normalised state |ψ〉 we
have that Prob(A ∈ �; |ψ〉) = 〈ψ | Ê[A ∈ �] |ψ〉 where Ê[A ∈ �] is the spectral projector onto
the eigenspace of Â associated with eigenvalues that lie in � ⊂ IR.

2 The key point here is that the proposition “A ∈ �” implies the proposition “f (A) ∈ f (�)” although
the converse is generally false. For example, if a physical quantity A has the value 2 then this implies
that the value of A2 is 4. On the other hand, from the knowledge that A2 = 4 we can deduce only
that A = 2 or −2.

3 In normal set theory, the notation f : X → Y means that f is a function from the set X to the set Y .
In a general category, the notation f : X → Y will denote an arrow/morphism whose domain is the
object X and whose range is the object Y .

4 In general, the notation A := B means that the quantity A is defined by the expression B. This is
frequently of the form stating that A is the set of entities that possesses a particular property, as in
the example of Eq. (1.1).

5 A collection S of arrows with domain O is said to be a ‘sieve on O’ if for any f ∈ S, h ◦ f ∈ S for
all arrows h that can be combined with f (i.e., are which are such that the domain of h is equal to
the range of f ). Thus a sieve is like a left ideal I in a monoid M since nm ∈ I for all n ∈ M and
m ∈ I . This is one way of understanding why left ideals in monoids are important in topos theory:
something that is much exploited in the current paper.
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topos in this example is given by the collection of presheaves6 over the category
A(H).

From a mathematical perspective this structure is correct, nevertheless the
underlying theory—of presheaves and the logic of sieves—is not the easiest thing
to grasp. So it is natural to wonder if there might be a mathematically simpler way
to use topos theory in quantum physics. For example, one can rewrite Eq. (1.1) as

V |ψ〉(A ∈ �) := {fO : Â → B̂ | Prob(f (A) ∈ f (�); |ψ〉) = 1} (1.2)

= {f : IR → IR | Ê[f (A) ∈ f (�)] |ψ〉 = |ψ〉} (1.3)

where, in general, Ê[B ∈ �] denotes the spectral projector onto the eigenspace of
the (bounded, self-adjoint) operator B̂ associated with eigenvalues that lie in the
range � ⊂ IR.

By rewriting Eq. (1.1) in the form Eq. (1.3) nothing is lost, and yet Eq. (1.3)
looks simpler since it deals directly with functions f : IR → IR, rather than with
the arrows that they induce in the category A(H). In this respect, a key observation
is that the right hand side of Eq. (1.3) is actually a left ideal7 in the monoid of
functions from IR to IR. A left ideal is much like a sieve of arrows (c.f. footnote 5)
and yet, arguably, is easier to grasp intuitively.

The present paper takes its cue from replacing Eq. (1.2) with Eq. (1.3),
and is grounded in an attempt to exploit the topos structure associated with any
monoid, not least because in text books on topos theory this example is invariably
introduced early on, and it is a relatively easy one with which to work.

We recall that a monoid is a semi-group with an identity, and thus differs
from a group in that inverses of elements may not exist. One obvious example of
a monoid is the set of all n × n matrices in which the combination law is matrix
multiplication; the identity is then just the unit matrix. Another basic example of a
monoid is the collection, Map(X,X), of all functions f : X → X from some set X
to itself, with the combination f � g of a pair f, g of such functions being defined
as their composition: f � g(x) := f (g(x)) for all x ∈ X. The monoid identity is
just the identity function idX : X → X.

For any given monoid M , a key concept is that of a (left) ‘M-set’. This
is defined to be a set X together with an association to each m ∈ M of a map
�m : X → X such that (i) if 1 denotes the unit of M then �1(x) = x for all x ∈ X;
and (ii) for all m, n ∈ M , we have

�m ◦ �n = �mn (1.4)

6 A ‘presheaf’ F over a category C is defined to be (i) to each object A in C, an assignment of a set
F(A); and (ii) to each arrow f : A → B in C, an assignment of a map F(f ) : F(A) → F(B) such that
if f : A → B and g : B → C then F(g ◦ f ) : F(A) → F(C) satisfies F(g ◦ f ) = F(g) ◦ F(f ). It is
also required that if 1A : A → A is the identity arrow at any object A inC, then F(1A) : F(A) → F(A)
is the identity map.

7 Recall that a subset I ⊂ M is a ‘left ideal’ if mI := {mn ∈ M | n ∈ I } ⊂ I for all m ∈ M .
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For simplicity, the element �m(x) ∈ X will usually be written as mx, and then
Eq. (1.4) reads

m(nx) = (mn)x (1.5)

for all x ∈ X.
As theoretical physicists, we are very familiar with M-sets for the spe-

cial case when M is a group: for example, any linear representation of a
group is an M-set, as is the action of a group on a manifold in the theory
of non-linear group realisations. Indeed, Eq. (1.4) describes a ‘realisation’ of
the monoid M in the monoid, Map(X,X), of all functions of X to itself; as
such it can be viewed as a significant generalisation of the idea of a non-
linear realisation of a group. As we shall see in the present paper, there are
potential physical roles for M-sets in situations where M is definitely not a
group.

The relation to topos theory becomes clear with the observation that, for
any given monoid M , the collection of all M-sets can be given the structure
of a topos. The objects in this category are the M-sets themselves, and the ar-
rows/morphisms between a pair of M-sets are the equivariant8 functions between
them. A crucial object in any topos is the ‘object of truth values’, �, which plays
the analogue of the set {0, 1} in the category of sets. In the case of the topos of
M-sets, � turns out to be the set of left ideals in M . The close resemblance of
a left ideal to a sieve of arrows suggests that it might be possible to recover
our earlier results using M-sets rather than the more complicated mathematics
of presheaves. This is indeed the case but, as we will see, using the theory of
M-sets it is also possible to obtain quite new ideas about generalised quantum
valuations.

The basic mathematics of the theory of M-sets is described in Section 2.1.
This is applied in Section 2.2. to recover the topos ideas in classical physics that
were first discussed by Jeremy Butterfield and myself in Butterfield and Isham
(1999). Then, in Section 2.3., we show how topos monoid ideas can be used to
recover in a new guise our earlier results on quantum theory as encapsulated in
Eq. (1.1). The monoid used in this example is that given by the collection of all
bounded, measurable functions from IR to IR.

Then, in Section 3 we strike out in a new direction by considering possible
roles for the monoid of all bounded operators on the Hilbert space of the quantum
theory. In turn, this leads us to consider the monoid consisting of finite strings of
projection operators and hence, finally, to a new topos perspective on the familiar,
albeit controversial, process of state vector reduction.

8 A function f : X → Y between M-sets X and Y is equivariant if f (mx) = mf (x) for all m ∈ M ,
x ∈ X.
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2. MONOID ACTIONS AND GENERALISED TRUTH VALUES

2.1. The General Theory

Following standard practice, we denote by BM the category whose objects
are (left) M-sets, and whose arrows are M-equivariant maps. Thus, if X and Y are
M-sets, an arrow f : X → Y in the category BM is a map f : X → Y such that
f (mx) = mf (x) for all m ∈ M , x ∈ X.

In any topos a key role is played by the ‘truth object’ �. This object
has the property that the sub-objects of any object X are in one-to-one corre-
spondence with arrows9 χ : X → �. For the category BM , the truth object is
the set LM of all left ideals in the monoid M . The action of M on LM is
(Goldblatt, 1984)

�m(I ) := {m′ ∈ M | m′m ∈ I } (2.2)

for all m ∈ M . It is immediately clear that the right hand side of Eq. (2.2) is indeed
a left ideal in M , and one verifies trivially that Eq. (1.4) (or, equivalently, Eq. (1.5))
is satisfied. Note that for the ideal 1 := M we have �m(1) = 1 for all m ∈ M . For
the ideal 0 := ∅, we have �m(0) = 0 for all m ∈ M .

The Heyting algebra structure on LM is defined as follows. The logical ‘and’
and ‘or’ operations are I ∧ J := I ∩ J and I ∨ J := I ∪ J respectively, and the
unit element and zero element in the algebra are 1 := M and 0 := ∅ respectively.
The partial order is defined by saying that I ≺ J if and only if I ⊆ J , and the
logical implication I ⇒ J is defined by Goldblatt (1984)

I ⇒ J := {m ∈ M | �m(I ) ⊂ �m(J )}. (2.3)

As in all Heyting algebras, ¬I is defined by ¬I := I ⇒ 0; thus, in BM ,

¬I := {m ∈ M | ∀n, nm �∈ I }. (2.4)

Our task, then, is to seek physical applications for truth values that lie in the
Heyting algebra of all left ideals in a monoid. From the perspective of topos theory,
the natural way of finding such truth values arises from the fundamental nature
of sub-objects: namely, the existence of a one-to-one correspondence between
sub-objects of an object X and arrows from X to �. In the case of a topos BM ,
the sub-objects of an object X in BM are the M-invariant subsets of X, where
a subset Y of X is said to be ‘M-invariant’ if for all m ∈ M and y ∈ Y we have
my ∈ Y . Then, a BM-arrow χ : X → LM (i.e., χ is an M-equivariant function

9 For the category of sets, � is just the set {0, 1}. If J is a subset of the set X then the associated
characteristic map χJ : X → {0, 1} is

χJ (x) :=
{

1 if x ∈ J ;
0 otherwise.

(2.1)
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from X to LM) determines the subset

J χ ⊂ X := {x ∈ X | χ (x) = 1} (2.5)

which, as can readily be checked, is indeed M-invariant. Conversely, if J ⊂ X is an
M-invariant subset of X, then the associated ‘characteristic arrow’ χJ : X → LM

is defined by

χJ (x) := {m ∈ M | mx ∈ J }. (2.6)

It is easy to see that, since J is M-invariant, the right hand side of Eq. (2.6) is
indeed a left-ideal in M , and hence an element of LM .

One can think of the right hand side of Eq. (2.6) as being a measure of the
‘extent’ to which x is an element of J : the more elements of M send x into J (i.e.,
the larger the right hand side of Eq. (2.6)) the ‘closer’ x is to being in J . With this
in mind, we rewrite Eq. (2.6) as

[x ∈ J ]BM := {m ∈ M | mx ∈ J } (2.7)

and view Eq. (2.7) as the truth value in the topos BM for the proposition “x ∈ J ”.
Note that if x belongs to J then [x ∈ J ]BM = M—the unit element of the Heyting
algebra LM .

In practice, we shall use a slight generalisation of the example of Eq. (2.7).
Namely, if X is an M-set let K := {Km,m ∈ M} be a family of subsets of X that
satisfy the conditions, for all m,10

m′Km ⊂ Km′m (2.8)

for all m′ ∈ M .11 Then if we define (cf. Eq. (2.7))

[x ∈ K]BM := {m ∈ M | mx ∈ Km} (2.9)

it is easy to check that the right hand side of Eq. (2.9) is a left ideal in M . Thus
another structure that can give a source of generalised truth values is a family of
subsets {Km ⊂ X,m ∈ M} that satisfies Eq. (2.8).12

10 If K is any subset of the M-set X, we denote by mK the set {mx | x ∈ K}.
11 On the face of it, we could also consider families of sets of the form KI := {Km | m ∈ I } for any

ideal I in M , since Eq. (2.8) still makes sense in this case. However, we can reduce this to the case
with I := M by choosing Km to be the empty set for all m �∈ I .

12 With some effort it can be shown that families {Km, m ∈ M} satisfying Eq. (2.8) are in one-to-one
correspondence with equivariant maps λ : X × M → LM . Specifically, given such a map λ define
Kλ

m := {x ∈ X | λ(x, m) = 1}. Conversely, given a family K = {Km, m ∈ M} satisfying Eq. (2.8)
define λK(x,m) := {m′ ∈ M | m′x ∈ Km′m}. The significance of this result is that equivariant maps
λ : X × M → LM correspond to the points (in the ordinary set-theoretic sense) of the power object
PX of the object X in BM (Goldblatt, 1984). This is an important part of the general theory of
the topos BM but it has been relegated to a footnote since I am trying to minimise the amount of
‘heavy’ mathematics in the main text.
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In particular, if K is any subset of X (not necessarily M-invariant) and if we
define Km := mK , we see at once that Eq. (2.8) is satisfied. In short, any subset
K ⊂ X gives rise to a generalised truth value13

[x ∈ K]BM := {m ∈ M | mx ∈ mK}. (2.10)

It can readily be checked that the right hand side of Eq. (2.10) is indeed a left
ideal in the monoid M . This example will play a central role in the applications to
quantum theory.

More generally, if K1, K2 are any pair of subsets of X we can define

[K1 ⊂ K2]BM := {m ∈ M | mK1 ⊂ mK2}. (2.11)

A particular example of Eq. (2.10) is K := {y} for some y ∈ X. In this special
case, Eq. (2.10) can be written as

[x = y]BM := {m ∈ M | mx = my}. (2.12)

The right hand side of Eq. (2.12) is clearly a left ideal in M: for if m ∈ M is
such that mx = my then, trivially, nmx = nmy for all n ∈ M . Thus Eq. (2.12) is
a measure in the topos of M-sets of the extent to which the points x, y in X are
‘partially equal’. Indeed, [x = y]BM is larger the ‘closer’ x and y are to being
equal, with [x = y]BM = M (the identity of the Heyting algebra LM) if x = y.

2.2. A Monoid Concept of ‘Nearness to Truth’ in Classical Physics

An application of a topos of type BM arises in classical physics. Here we
have a classical state space S (a smooth manifold) in which each physical quantity
A is represented by a smooth, real-valued function, A, on S. Each state s ∈ S
gives rise to a simple valuation on propositions of the form

V s(A ∈ �) :=
{

1 if A(s) ∈ �;

0 otherwise.
(2.13)

In other words, the proposition “A ∈ �” is true if the state s is such that A(s)
belongs to �; otherwise it is false. Equivalently, “A ∈ �” is true if and only if

s ∈ A
−1

(�) := {s ∈ S | A(s) ∈ �}.
Such a simple ‘either-or’ perspective seems natural in the context of classical

physics, and indeed one may wonder what else the proposition “A ∈ �” could

13 One must be careful not to confuse Eq. (2.10) with Eq. (2.7). If K is an M-invariant subset of X, the
definition in Eq. (2.10) still makes sense, but this is generally not the same as Eq. (2.7) since there
will typically be elements m ∈ M such that mK is a proper subset of K . When K is an invariant
subset we will use Eq. (2.7) (rather than Eq. (2.10)) since this corresponds to thinking of K as a
sub-object of X in BM .
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mean other than the information conveyed by Eq. (2.13). All this seems clear-

cut—but is it really so? For suppose s is a state that does not belong to A
−1

(�)
but which, nevertheless, is ‘almost’ in this subset (so that A(s) ‘almost’ belongs
to �): is there not then some sense in which the proposition “A ∈ �” is ‘almost
true’? Contrariwise, suppose s is such that A(s) belongs to �, but only just so (i.e.,
A(s) is ‘close’ to the edges of �): then is not “A ∈ �” ‘almost false’, or ‘only just
true’? Such grey-scale judgements are made frequently in daily life, but at first
sight there seems to be no role for them in the harsh, black-and-white mathematics
of classical physics.

From a mathematical perspective, the problem is how to judge the nearness

of any point s in S to the subset A
−1

(�) of S. Of course, we could always put
a metric on S, but there is in general no obvious or natural way of choosing this
(notwithstanding the fact that, in classical physics, S is a symplectic manifold
with a canonical two-form).

However, a more appealing approach is based on the observation that if the
state s is such that A(s) ∈ � then, of necessity, f (A(s)) ∈ f (�) for any smooth
function f : IR → IR. This type of coarse-graining was discussed in detail in
Butterfield and Isham (1999) in the context of assigning truth values to propositions
“A ∈ �” when the state of the system is a macrostate M ⊂ S. In the present case,
we have M = {s}, and then the analysis in Butterfield and Isham (1999) results in
the generalised valuation14

V s(A ∈ �) := {f ∈ C∞(IR, IR) | f (A(s)) ∈ f (�)} (2.14)

where C∞(IR, IR) denotes the set of smooth (i.e., infinitely differentiable) functions
f : IR → IR.

In Butterfield and Isham (1999), the discussion of Eq. (2.14) employed a
topos of presheaves with truth values being sieves. However, Eq. (2.14) can easily
be reinterpreted in terms of a topos BM . Specifically, we note that, since the
composition of a pair of smooth functions is itself smooth, the set C∞(IR, IR) can be
given a monoid structure whose combination law is defined as f � g (r) := f (g(r))
for all r ∈ IR. We then see at once that the right hand side of Eq. (2.14) is actually
a left ideal in this monoid. Indeed, if f ∈ C∞(IR, IR) is such that f (A(s)) ∈ f (�)
then, trivially, for all h : IR → IR we have h(f (A(s))) ∈ h(f (�)). Thus f (A(s)) ∈
f (�) implies that, for all h ∈ C∞(IR, IR), we have h � f (A(s)) ∈ h � f (�), which
means precisely that the right hand side of Eq. (2.14) is a left ideal in the monoid
C∞(IR, IR).

14 The coarse-graining of the original proposition “A ∈ �” that is implicit in Eq. (2.14) can be seen by
noting that f (A(s)) ∈ f (�) if and only if A(s) ∈ f −1(f (�)), and hence Eq. (2.14) assigns to the
proposition “A ∈ �” all those weaker (coarse-grained) propositions “A ∈ f −1(f (�))” which are
‘true’ in the normal sense of the word.
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This remark suggests that the generalised valuation in Eq. (2.14) could be
understood in terms of the topos of C∞(IR, IR)-sets. This is indeed the case: in
particular, we consider the obvious action of the monoid C∞(IR, IR) on the set IR,
defined by15

�f (r) := f (r) (2.15)

for all f ∈ C∞(IR, IR) and r ∈ IR. Now, for each fixed state s in S, A(s) belongs
to IR, and hence, applying Eq. (2.10) with X := IR, x := A(s), and K := � ⊂ IR,
we see that

[A(s) ∈ �]BC∞(IR,IR) = {f ∈ C∞(IR, IR) | f (A(s)) ∈ f (�)}. (2.16)

In other words, the generalised valuation in Eq. (2.14) is just [A(s) ∈ �]BC∞(IR,IR).
With an eye to the application to quantum theory to be discussed in Sec.

2.3., we note that another monoid interpretation of Eq. (2.14) can be obtained
by considering the action of the monoid C∞(IR, IR) on the set C∞(S, IR) whose
elements (smooth, real-valued functions A, B on S) represent physical quantities
in the system. Specifically, we define

�f (B) := f ◦ B (2.17)

for all f ∈ C∞(IR, IR) and B ∈ C∞(S, IR). We can also define an action of
C∞(IR, IR) on the family, P (IR), of subsets of IR by

�f (�) := f (�) (2.18)

for all f ∈ C∞(IR, IR) and � ⊂ IR. These operations combine to give an action of
the monoid C∞(IR, IR) on C∞(S, IR) × P (IR) defined by

�f : C∞(S, IR) × P (IR) → C∞(S, IR) × P (IR)

(B,�) �→ (f ◦ B, f (�)) (2.19)

If desired, this can also be viewed as defining an action of C∞(IR, IR) on the space
of propositions of the type “B ∈ �”. In other words, the proposition “B ∈ �” is
mapped by f to the proposition “f (B) ∈ f (�)”.

We then define, for each state s ∈ S, the set

Es := {(B,�) | B(s) ∈ �} (2.20)

15 This is a special case of a much wider class of examples. Indeed, for any set X there is a natural action
of the monoid Map(X, X) on X given by (cf. Eq. (2.15)) �f (x) := f (x) for all f ∈ Map(X,X) and
x ∈ X. If X is a topological space, it is natural to restrict attention to the sub-monoid C(X,X) of
continuous functions from X to X. If X is a differentiable manifold, one would use the sub-monoid
C∞(X,X) of smooth functions from X to X. Note that these subsets of Map(X,X) are indeed sub-
monoids since the composition of a pair of continuous (resp. smooth) functions is itself continuous
(resp. smooth). More generally, if X is an object in an arbitrary (small) category with a terminal
object 1, one could use the monoid Hom(X,X) of arrows whose domain and range is X, and with the
obvious action on the global elements x : 1 → X in which f ∈ Hom(X,X) transforms x to f ◦ x.
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and note that this subset of C∞(S, IR) × P (IR) is invariant under the action
of the monoid C∞(IR, IR) (for, if B(s) ∈ � then certainly f (B(s)) ∈ f (�) for
all f ∈ C∞(IR, IR)). As such, it is a sub-object of C∞(S, IR) × P (IR) in the
topos BC∞(IR, IR), and hence there is an associated characteristic arrow from
C∞(S, IR) × P (IR) to the set LC∞(IR, IR) of left ideals of C∞(IR, IR). According
to the general result in Eq. (2.7), this gives rise to the generalised truth value

[(A,�) ∈ Es]BC∞(IR,IR) = {f ∈ C∞(IR, IR) | (f ◦ A, f (�)) ∈ Es}
= {f ∈ C∞(IR, IR) | f (A(s)) ∈ f (�)} (2.21)

which is precisely the right hand side of the generalised valuation Eq. (2.14).

2.3. Using the Monoid M(IR, IR) in Quantum Theory

We can now discuss a monoid reinterpretation of the generalised valuation
Eq. (2.13)16

V |ψ〉(A ∈ �) := {f : IR → IR | Ê[f (A) ∈ f (�)] |ψ〉 = |ψ〉} (2.22)

that was introduced in Isham and Butterfield (1998) in the context of our topos
analysis of the Kochen-Specher theorem. In that earlier17 paper, the right hand
side of Eq. (2.22) was interpreted as a sieve of arrows on the object Â in a
category18 A(H) whose objects are bounded, self-adjoint operators, and whose
arrows fA(H) : Â → B̂ are defined to be all real functions f : IR → IR with the
property that B̂ = f (Â).

The underlying mathematics is, again, presheaf theory, but in the light of the
discussion above, it is reasonable to enquire if Eq. (2.22) can be reinterpreted in
a monoid language. To this end, first recall that if Â is any bounded, self-adjoint
operator then, for any bounded, measurable function f : IR → IR, the operator
f (Â) can be defined using the spectral theorem for Â, and this operator is also
bounded and self-adjoint. We denote the set of all such functions f : IR → IR by
M(IR, IR), and note that this can be given a monoid structure by composition since
the composition of any pair of bounded and measurable functions is itself bounded
and measurable.

Then the critical observation is that the right hand side of Eq. (2.22) is actually
a left ideal in this monoid. The reason is analogous to that in Section 2.2. in regard

16 Note that the right hand side of Eq. (2.22) is invariant under the scaling |ψ〉 �→ λ |ψ〉 for all non-zero
complex numbers λ. Hence Eq. (2.22) defines a valuation on the projective Hilbert space PH of all
rays in H, and we could just as well denote the left hand side as V [ |ψ〉](A ∈ �) where [ |ψ〉] denotes
the ray that passes through the vector |ψ〉.

17 See Döring (2005) for a recent, and very sophisticated, analysis of the Kochen-Specher theorem
using the mathematics of presheaves.

18 In Isham and Butterfield (1998) the category A(H) was denoted O.
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to the discussion following Eq. (2.14). Specifically, for any h ∈ M(IR, IR), we
have19

Ê[B ∈ �] � E[h(B) ∈ h(�)] (2.23)

in the partial ordering of the lattice of projection operators. It follows at once
that if |ψ〉 and f are such that Ê[f (A) ∈ f (�)] |ψ〉 = |ψ〉 then Ê[h(f (A)) ∈
h(f (�))] |ψ〉 = |ψ〉 for all h ∈ M(IR, IR). But this is precisely the statement that
Eq. (2.22) is a left ideal in the monoid M(IR, IR).

This suggests strongly that the generalised valuation Eq. (2.22) can be rein-
terpreted using the language of the topos of M(IR, IR)-sets. To complete this iden-
tification it is necessary to find an appropriate set on which the monoid M(IR, IR)
acts, and then apply the general result in Eq. (2.7).

The first relevant observation is that if A(H) denotes the set of all bounded,
self-adjoint operators on H, then the operation whereby B̂ ∈ A(H) is replaced by
f (B̂), with f ∈ M(IR, IR), can be viewed as a left action of the monoid M(IR, IR)
on A(H) (cf. Eq. (2.17)). Similarly, if B(IR) denotes the collection of bounded,
Borel subsets of IR, then an action of M(IR, IR) on B(IR) can be defined20 by letting
f ∈ M(IR, IR) take � ∈ B(IR) to f (�). This is a direct analogue of the action,
Eq. (2.18), in the classical case.

Combining these two operations gives a left action of the monoid M(IR, IR)
on A(H) × B(IR) which is defined as (cf. Eq. (2.19))

�f : A(H) × B(IR) → A(H) × B(IR)

(B̂, �) �→ (f (B̂), f (�)) (2.24)

for all f ∈ M(IR, IR). This can also be viewed as an action of M(IR, IR) on the
space of propositions of the form “B ∈ �”. In any event, what is important is that
to each vector |ψ〉 ∈ H, we can define (cf. Eq. (2.20))

E |ψ〉 := {(B̂, �) | Ê[B ∈ �] |ψ〉 = |ψ〉}. (2.25)

Then the crucial observation is that this subset of A(H) × B(IR) is invariant
under the action of the monoid M(IR, IR). This follows at once from the partial
ordering relation in Eq. (2.23) which guarantees that if (B̂, �) ∈ E |ψ〉 (so that
Ê[B ∈ �] |ψ〉 = |ψ〉) then (f (B̂), f (�)) ∈ E |ψ〉 for all f ∈ M(IR, IR).

19 Strictly speaking, � has to be a Borel subset of IR in order for the spectral projector Ê[B ∈ �] to
exist. However, this then raises the difficulty that if � is Borel it is not necessarily the case that h(�)
is Borel for arbitrary h ∈ M(IR, IR). This issue is resolved in Butterfield and Isham (1999) but we
will not dwell on it here.

20 It is necessary to take into account the cautionary remark in footnote 19.
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We can now use the general definition in Eq. (2.7) to compute this subset’s
characteristic function from A(H) × B(IR) to LM(IR, IR). This gives

[(A,�) ∈ Es]BC∞(IR,IR) = {f ∈ C∞(IR, IR) | (f ◦ A, f (�)) ∈ Es}
= {f ∈ C∞(IR, IR) | f (A(s)) ∈ f (�)} (2.26)

which is precisely the right hand side of Eq. (2.22). Thus the generalised truth
value in Eq. (2.22) has an interpretation in terms of the topos of M(IR, IR)-sets.
Note the close analogy with the result Eq. (2.26) of the classical theory.

3. A TOPOS INTERPRETATION OF STATE-VECTOR REDUCTION

3.1. Actions of the Monoid L(H)

So far, our application of monoid theory to quantum mechanics has been to
use the language of M(IR, IR)-sets to re-express earlier results obtained originally
using presheaf theory. However, we wish now to develop a new, ‘neo-realist’
interpretation of quantum theory that uses a topos of M-sets in a fundamental way.

Given a quantum theory with a Hilbert space H, one obvious monoid to
consider is the set L(H) of all bounded, linear operators on H. The monoid
composition law is the operator product, and the unit element is simply the unit
operator 1̂. A related monoid is obtained by defining two operators to be equivalent,
Â ≡ B̂, if there exists λ ∈ |C∗ (the non-zero complex numbers) such that Â = λB̂.
We denote the set of equivalence classes as L(H)/ |C∗ and note that this can be
given a monoid structure with the combination law

[Â][B̂] := [ÂB̂] (3.1)

where [Â] denotes the equivalence class of Â. This particular monoid was dis-
cussed in quantum theory many years ago in the context of the theory of Baer
∗-semigroups (Beltrametti and Cassinelli, 1981; Pool, 1975).

The obvious set on which the monoid L(H) acts is H itself, with �Â( |ψ〉) :=
Â |ψ〉 for all Â ∈ L(H) and |ψ〉 ∈ H.

Another natural action is on the projective Hilbert space PH, with the action
on any ray [ |ψ〉] (the ray that passes through the (non-null) vector |ψ〉) being

�Â([ |ψ〉]) := [Â |ψ〉] (3.2)

Here, the meaning of the symbol [Â |ψ〉] is as follows. If Â |ψ〉 �= 0, then [Â |ψ〉]
denotes the ray that passes through Â |ψ〉. However, if Â |ψ〉 = 0, then [Â |ψ〉] =
[0] denotes a special point that must be added to the projective Hilbert space. Thus
the action of our monoid is not on PH but on PH ∪ [0]. Of course, �Â[0] = [0] for
all operators Â in the monoid L(H). In other words, [0] is an absorbing element
for the action of L(H) on PH ∪ [0].
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The action on vectors can be extended to give an action of the monoid L(H) on
arbitrary closed, linear subspaces of H. Specifically, if K ⊂ H is such a subspace
then, for all Â ∈ L(H), we define

�Â(K) := ÂK := {Â |ψ〉 | |ψ〉 ∈ K}cl (3.3)

where the superscript { }cl signifies that the topological closure is to be taken of
the quantity inside the parentheses. Note that since there is a one-to-one cor-
respondence between closed, linear subspaces on H and projection operators,
Eq. (3.3) also generates an action of the monoid L(H) on the collection of projec-
tors. However, there is no obvious way of writing down explicitly what Â does to
any particular projector.

From a projective perspective, we denote by PK the set of all rays passing
through the non-null vectors in K . We then get an action of L(H) on PK ∪ [0]
defined by

�Â(PK) :=
⋃

[ |ψ〉]∈PK

[Â |ψ〉] (3.4)

and with �Â[0] := 0 as before.
If one thinks of quantum states as being represented by normalised vectors

then one might try to define an action of L(H) by

|ψ〉 �→ Â |ψ〉
‖Â |ψ〉‖ . (3.5)

Note that the right hand side of Eq. (3.5) is invariant under the transformation
Â �→ λÂ, λ ∈ |C∗. Thus Eq. (3.5) passes to an action of the monoid L(H)/ |C∗.
There is an analogue of Eq. (3.5) on density matrices

ρ̂ �→ ÂρÂ†

tr(ρ̂ÂÂ†)
. (3.6)

We note however that Eq. (3.5) is only defined if Â |ψ〉 �= 0, and similarly
Eq. (3.6) requires tr(ρ̂ÂÂ†) �= 0. This means that neither Eq. (3.5) or Eq. (3.6)
corresponds to a well-defined action of the monoid L(H): we shall return to this
problem later.

3.2. Truth Values Using the Monoid L(H)

Let us now consider how truth values in the set of left ideals of L(H) could
arise. One of the simplest expressions is Eq. (2.12) which, for the monoid action
of L(H) on H, reads[

|ψ〉 = |φ〉
]

BL(H)
:= {B̂ ∈ L(H) | B̂ |ψ〉 = B̂ |φ〉} (3.7)
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= {B̂ ∈ L(H) | B̂( |ψ〉 − |φ〉) = 0} (3.8)

which is clearly a left ideal of L(H). There is an analogous expression on the
extended projective Hilbert space (i.e., on PH ∪ [0]) of the form[

[ |ψ〉] = [ |φ〉]
]

BL(H)
:= {B̂ ∈ L(H) | [B̂ |ψ〉] = [B̂ |φ〉] }. (3.9)

Note that the equation [B̂ |ψ〉] = [B̂ |φ〉] implies that B̂ |ψ〉 = 0 if, and only if,
B̂ |φ〉 = 0.

From a mathematical perspective, Eq. (3.8) is an interesting Heyting-algebra
valued measure of the extent to which the vectors |ψ〉 and |φ〉 are not equal.
However, as it stands, it is hard to give any physical meaning to this expression.
Basically, the problem is that the monoid L(H) consists of all bounded operators,
whereas, in quantum theory, the most important operators are unitary operators
and self-adjoint operators.

We could consider the sub-monoid of unitary operators, but this is uninterest-
ing since a unitary operator is invertible, and hence one-to-one. This means that,
for example, the analogue of Eq. (3.8) for unitary operators is the empty set unless
|ψ〉 = |φ〉.

One might be tempted to consider the collection A(H) of bounded, self-
adjoint operators on H, but this is not a sub-monoid of L(H) since the product
of self-adjoint operators is not itself self-adjoint unless they commute. However,
this remark suggests another possibility which, it transpires, is fruitful: namely,
consider the subset, PrA(H), of L(H) consisting of all finite products of self-
adjoint operators. This is a sub-monoid, and gives rise to the expression[
|ψ〉 = |φ〉

]
BPrA(H)

: =

{ÂnÂn−1 · · · Â1 | ÂnÂn−1 · · · Â1 |ψ〉 = ÂnÂn−1 · · · Â1 |φ〉}.
(3.10)

This expression still has no obvious physical meaning, but it does suggest
one thing very strongly: namely, the process of state-vector reduction! This is the
procedure whereby if a series of (ideal) measurements is made of physical quan-
tities whose corresponding outcomes are represented by the projection operators
P̂1, P̂2, . . . , P̂n respectively, then after the measurements are made (neglecting
time development between them) the state vector has been reduced to

|ψ〉 �→ P̂nP̂n−1 · · · P̂1 |ψ〉. (3.11)

Of course, this can be viewed as the result of a series of reductions

|ψ〉 �→ P̂1 |ψ〉 �→ P̂2P̂1 |ψ〉 �→ · · · �→ P̂nP̂n−1 · · · P̂1 |ψ〉. (3.12)
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Actually, Eq. (3.11) is not quite correct, as we need to consider the normali-
sation of the reduced vector. For the moment though, we can say that the key idea
is to think of the reduction Eq. (3.11) as being the result of an action on H of the
sub-monoid21 , PrP (H), of finite products of projection operators.

For this particular monoid, the general equation Eq. (2.12) reads[
|ψ〉 = |φ〉

]
BPrP (H)

:= {P̂nP̂n−1 · · · P̂1 | P̂nP̂n−1 · · · P̂1 |ψ〉 = P̂nP̂n−1 · · · P̂1 |φ〉}
(3.13)

or, perhaps better, we should use rays in the Hilbert space and define[
[|ψ〉] = [|φ〉]

]
BPrP (H)

:= {P̂nP̂n−1 · · · P̂1 | [P̂nP̂n−1 · · · P̂1 |ψ〉]

= [P̂nP̂n−1 · · · P̂1 |φ〉] } (3.14)

Note that the right hand side of Eq. (3.14) is equivalent to the statement that there
exists λ ∈ |C∗ such that P̂nP̂n−1 · · · P̂1 |ψ〉 = λP̂nP̂n−1 · · · P̂1 |φ〉.

Unlike Eq. (3.10), the expressions in Eqs. (3.13) and (3.14) do have a very
interesting physical interpretation. Namely, they assign (in a slightly different
way) as a measure of the similarity between two state vectors the collection of
those series of ideal measurements which, if they were performed, give reduced
vectors that can no longer be distinguished from each other.

Strictly speaking, this is not quite correct, and will be amended shortly in
Section 3.3.. However, before doing that we note that this idea can be developed
immediately to attain our goal of producing a new type of truth value for proposi-
tions “A ∈ �” in quantum theory. For let HA∈� denote the subspace of H that is
the image of the spectral projector Ê[A ∈ �]; i.e., the proposition “A ∈ �” is true
with probability 1 for all states |φ〉 in HA∈�. Then, based on the general result
Eq. (2.10), we can define the new generalised valuation

V |ψ〉(A ∈ �)BPrP (H) := [ |ψ〉 ∈ HA∈�]BPrP (H)

= {P̂nP̂n−1 · · · P̂1 | P̂nP̂n−1 · · · P̂1 |ψ〉 ∈ P̂nP̂n−1 · · · P̂1HA∈�}. (3.15)

Alternatively, and probably better in terms of physical meaning, we can adopt
the projective perspective and define

V [ |ψ〉](A ∈ �)BPrP (H) :=
[

[|ψ〉] ∈ PHA∈�

]
BPrP (H)

= {P̂nP̂n−1 · · · P̂1 | [P̂nP̂n−1 · · · P̂1 |ψ〉] ∈ �P̂nP̂n−1···P̂1
(PHA∈�)}. (3.16)

Note that ifHA∈� is a one-dimensional subspace ofH, then Eq. (3.16) is equivalent
to Eq. (3.14).

21 The notation is potentially confusing here. The symbol PH denotes the projective Hilbert space—
i.e., the space of (complex) one-dimensional subspaces of H; on the other hand, P (H) denotes the
space of projection operators on H.
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It must be emphasised that the assignment in Eq. (3.15) is intended to be
counterfactual: we are not interested in state-vector reduction as it is normally
understood, whether—as in the instrumentalist interpretation of quantum theory—
it is regarded as a result of sub-ensemble selection, or whether—as in more
adventurous interpretations—it is interpreted either as an effective physical process
brought about by, for example, decoherence, or as an actual physical process
associated with some non-linear modification of the Schrödinger equation. Rather,
the intention is to assign the left ideal Eq. (3.15) (and similarly for Eq. (3.16))
in the monoid PrP (H) as the truth value of the proposition “A ∈ �” in the state
|ψ〉 with the intent of producing a new type of ‘neo-realist’ interpretation of the
quantum formalism: i.e., it is a non-standard (in the logical sense) way of saying
‘how things are’ in regard to the quantity A when the state is |ψ〉.

3.3. The Monoid of Strings of Projectors

At this point we should address a small defect in the formalism as presented
so far. Namely, given a product P̂nP̂n−1 · · · P̂1 of projectors, it is not possible to
recover the individual projectors from this operator since many different collec-
tions of projectors have the same product. In this sense, the statement above that
Eq. (3.13) “assigns as a measure of the similarity between two state vectors the
collections of those series of ideal measurements. . . ” is not strictly correct, and
the formalism must be modified slightly to gain the desired counterfactual inter-
pretation of Eqs. (3.13) and (3.15) (or Eq. (3.16)) in terms of strings of possible
operations. This is done as follows.

The key idea is to construct a new monoid, SP(H), whose elements are finite
strings of (non zero) projection operators, R := (R̂p, R̂p−1, . . . , R̂1) (p is called
the length of the string) and with the monoid product law defined by concatenation
of the strings. Thus if R := (R̂p, R̂p−1, . . . , R̂1) and Q := (Q̂q, Q̂q−1, . . . , Q̂1)
we define the product as

Q � R := (Q̂q, Q̂q−1, . . . , Q̂1, R̂p, R̂p−1, . . . , R̂1). (3.17)

The unit element in the monoid SP(H) is the empty string, ∅. Physically, we think
of the string (R̂p, R̂p−1, . . . , R̂1) as referring (counterfactually) to a situation in
which the first operation corresponds to the projector R̂1, the second operation to
R̂2, and so on.

If R := (R̂p, R̂p−1, . . . , R̂1) belongs to SP(H), we define the reduction of R

to be the operator

R̂ := R̂pR̂p−1 · · · R̂1. (3.18)
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As a matter of convention, we define ∅̂ := 1̂, so that the unit element in the monoid
SP(H) reduces to the unit operator. Note that Q̂ � R = Q̂R̂.22

We can now return to our ideas about generalised valuations in quantum
theory and start by allowing the monoid SP(H) to act on H by

�Q( |ψ〉) := Q̂ |ψ〉 (3.19)

for all finite strings Q of projectors. The expression Eq. (3.14) then gets replaced
by [

[|ψ〉] = [|φ〉]
]

BSP(H)
:= {Q ∈ SP(H) | [Q̂ |ψ〉] = [Q̂ |φ〉] } (3.20)

and the valuation in Eq. (3.16) becomes

V [ |ψ〉](A ∈ �)BSP(H) := {Q ∈ SP(H) | [Q̂ |ψ〉] ∈ �Q̂(PHA∈�)} (3.21)

As desired, this is a left ideal in the monoid SP(H), and thereby gives a new
generalised truth value for the proposition “A ∈ �” in the quantum state |ψ〉.

3.4. The Question of Normalisation

If we think of a state of a quantum system as being determined by a normalised
vector |ψ〉, then strictly speaking the state vector reduction should not be Eq. (3.11)
but rather

|ψ〉 �→ P̂nP̂n−1 · · · P̂1 |ψ〉
‖P̂nP̂n−1 · · · P̂1 |ψ〉‖ (3.22)

which is fine as long as ‖P̂nP̂n−1 · · · P̂1 |ψ〉‖ �= 0. This is no problem in the con-
ventional formalism since, there, one never gets reduction to an eigenstate for
which there is zero probability of finding the associated eigenvalue. Or, more pre-
cisely: such zero probability events are swept under the carpet as never happening.
However, for our neo-realist view, the normalisation problem is a genuine issue
since in the action of the monoid SP(H) on a state |ψ〉, there will of course be
strings Q for which Q̂ |ψ〉 = 0.

There is an analogous normalisation issue for density matrices. In order
to extend the formalism to include density-matrix states, we note first that the
condition on the right hand side of the non-projective version of Eq. (3.21) would
be Q̂ |ψ〉 ∈ Q̂HA∈�, and this is equivalent to the statement that

�Q(Ê[A ∈ �])Q̂ |ψ〉 = Q̂ |ψ〉 (3.23)

where, in accordance with the remark following Eq. (3.3), �Q(Ê[A ∈ �]) denotes
the projection operator onto the subspace Q̂HA∈�. In turn, Eq. (3.23) is equivalent

22 Note also that we allow consecutive repetition of projections operators in a string although, of course,
the reduction of a string with a repeated projector is the same as that without.
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to23

〈ψ | Q̂†�Q(Ê[A ∈ �])Q̂ |ψ〉 = 〈ψ | Q̂†Q̂ |ψ〉. (3.24)

Rewriting Eq. (3.23) in the form of Eq. (3.24) suggests how to extend the
formalism to include states that are density matrices. We can define an action of
the monoid SP(H) on the set of hermitian, trace-class operators ρ̂ (i.e., the trace
of ρ exists as a finite real number) by

�Q(ρ̂) := Q̂ρ̂Q̂†. (3.25)

Of course, if ρ̂ is a density matrix state (so that tr(ρ̂) = 1) then we might want to
define a normalised version of Eq. (3.25) as

�Q(ρ̂) := Q̂ρ̂Q̂†

tr(Q̂ρ̂Q̂†)
(3.26)

but this only makes sense if tr(Q̂ρ̂Q̂†) �= 0. However, we can avoid this difficulty
by imitating Eq. (3.24) and defining the generalised valuation

V ρ̂(A ∈ �)SP(H) := {Q ∈ SP(H) | tr(Q̂ρ̂Q̂†�Q(Ê[A ∈ �])) = tr(Q̂ρ̂Q̂†)}.
(3.27)

3.5. A New Category to Handle the Normalisation Issue

The trick used above to avoid the normalisation issue does not negate the fact
that the right hand side of Eq. (3.21) (resp. Eq. (3.27)) necessarily includes strings
Q for which Q̂ |ψ〉 = 0 (resp. Q̂ρ̂Q̂† = 0). Whether or not this is problematic
is somewhat debatable. On the one hand, it is true that, as has been remarked
already, in the conventional formalism such zeros do not occur. On the other hand,
our monoid methods are aimed at giving a neo-realist interpretation of quantum
theory, and, as such, it is not a priori necessary that they replicate exactly the
structure of state-vector reduction in the conventional formalism. In that sense,
the mathematics, as it is, does work.

However, if the normalisation question is thought to be a genuine issue, then
the first step might well seem to be that we should restrict our attention to strings
Q := (Q̂q, Q̂q−1, . . . , Q̂1) for which Q̂ := Q̂qQ̂q−1 · · · Q̂1 �= 0. We shall denote
the set of all such strings by SP(H)0. Thus the elements of SP(H)0 have the
property that they do not cause difficulties for any vectors in H.

The problem, however, is that if Q1 and Q2 are members of SP(H)0, their
monoid product Q2Q1 may not have this property. For example, considered as
strings of unit length, any non-null projectors P̂ , Q̂ belong to SP(H)0, but if P̂

and Q̂ are orthogonal then Q̂P̂ = 0.

23 If P̂ is any projector, and |φ〉 is any vector, it follows from the Schwarz inequality that P̂ |φ〉 = |φ〉
is equivalent to 〈φ| P̂ |φ〉 = 〈φ|φ〉.
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This means that SP(H)0 is only a partial monoid, with the product Q2Q1

being defined only if Q̂2Q̂1 �= 0. There are several ways in which this problem can
be tackled, and I will outline two of them here. A key observation is that a natural
source of partial monoids is category theory, since the arrows in any category form
a partial monoid: the composition g ◦ f of any two arrows f, g is only defined if
the range of f is equal to the domain of g. This suggests trying to associate the
elements of SP(H)0 with the arrows in some category. One way is to define a new
category X as follows:

(i) The objects are collections, �, of non-zero vectors in H with the property
that if |ψ〉 ∈ �, then, λ |ψ〉 ∈ � for all λ ∈ |C∗.24

(ii) If �1 and �2 are a pair of objects, we define the arrows between them as
the elements of the set

Hom(�1, �2) := {Q ∈ SP(H)0 | ∀ |ψ〉 ∈ �1, Q̂ |ψ〉 ∈ �2} (3.28)

≡ {Q ∈ SP(H)0 | Q̂�1 ⊂ �2}. (3.29)

If Q ∈ Hom(�1, �2) and R ∈ Hom(�2, �3) then the composite arrow
R ◦ Q ∈ Hom(�1, �3) is simply the concatenation of the strings.

Now, if |ψ〉, |φ〉 belong to some object � we can define, provisionally,

[ |ψ〉 = |φ〉]X ,� := {Q ∈ Hom(�, ·) | Q̂ |ψ〉 = Q̂ |φ〉} (3.30)

where Hom(�, ·) denotes the set of all arrows whose domain is �. However, since
the states concerned all have non-zero norm, it is better to replace Eq. (3.30) with
the normalised form (and referring now to rays in the Hilbert space)[

[ |ψ〉] = [ |φ〉]
]
X ,�

:={
Q ∈ Hom(�, ·) | ∃z ∈ |C, |z| = 1,

Q̂ |ψ〉
‖Q̂ |ψ〉‖ = z

Q̂ |φ〉
‖Q̂ |φ〉‖

}
(3.31)

which, of course, is not equivalent to Eq. (3.30) (we include the z phase factor since
normalised states are only determined up to such factors). In fact, the condition
on the right hand side of Eq. (3.31) is equivalent to the statement that there exists
some λ ∈ |C∗ such that Q̂ |ψ〉 = λQ̂ |φ〉.

It is clear that the right hand side of Eq. (3.31) is a sieve of arrows on �,
and hence a member of the Heyting algebra of all sieves on �; as such it is a
possible generalised truth value. It is easy to see how this would be extended
to give generalised truth values to propositions “ |ψ〉 ∈ K” for a linear subspace

24 It also would be possible to consider the objects to be subsets of rays. The analogue of our discussion
for that case is obvious.
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K ⊂ H; in particular to subspaces of � of the form HA∈�. Namely, as:

V |ψ〉(A ∈ �)X ,� := {Q ∈ Hom(�, ·) | Q̂ |ψ〉 ∈ Q̂HA∈�}. (3.32)

Note that ifHA∈� is a one-dimensional subspace ofH, then Eq. (3.32) is equivalent
to Eq. (3.31). Note also that Eq. (3.31) and Eq. (3.32) are ‘contextual’ in the sense
that their right hand sides depend on the subset � of vectors that is chosen to
contain |ψ〉, as well as HA∈� of course.

To give more meaning to this construction we observe that there is an implicit
‘polar operation’ at play here, as encapsulated in the definition

�0 := {Q ∈ SP(H)0 | ∀ |ψ〉 ∈ �, Q̂ |ψ〉 �= 0}. (3.33)

Note that Hom(�, ·) = �0.
Similarly, if J is a subset of SP(H)0, we can define

J 0 := { |ψ〉 ∈ H∗ | ∀Q ∈ J, Q̂ |ψ〉 �= 0} (3.34)

whereH∗ denotes the set of all non-null vectors inH. We note that J1 ⊂ J2 implies
J 0

2 ⊂ J 0
1 ; similarly �1 ⊂ �2 implies �0

2 ⊂ �0
1. This is one reason for referring to

these operations as ‘polar’. Another is the fact that �0
1 ∩ �0

2 = (�1 ∪ �2)0 for all
objects �1 and �2, and similarly for pairs J1 and J2. We note that this construction
can also be understood in the language of Galois connections (Bell, 1988) (which,
in turn, are a special case of adjoint functors) defined on the partially ordered sets
given by the subsets of SP(H)0 and the subsets of H∗.25

We next note that

(�0)0 = { |ψ〉 ∈ H∗ | ∀Q ∈ �0, Q̂ |ψ〉 �= 0}
= { |ψ〉 ∈ H∗ | ∀ |φ〉 ∈ �, Q̂ |φ〉 �= 0 ⇒ Q̂ |ψ〉 �= 0}. (3.35)

In particular, � ⊂ (�0)0. In fact, (�0)0 is a natural extension26 of the subset of
vectors � in the sense that we can extend � ⊂ H∗ to (�0)0 without changing the
set of arrows with that particular domain. We will say that the subset � is full27 if
� = (�0)0, and from now on we will write (�0)0 as just �00. In a similar way, we
can show that if J ⊂ SP(H)0 then J ⊂ J 00 := (J 0)0.

Now, for any subset of vectors � ⊂ H∗, we have � ⊂ �00 and hence, in
particular,

J 0 ⊂ (J 0)00 (3.36)

25 I thank Jeremy Butterfield for bringing this to my attention. For an application of the theory of
Galois connections in standard quantum logic see (Butterfield and Melia, 1993).

26 In the language of Galois connections, (�0)0 is the ‘closure’ of �.
27 In the theory of Galois connections, it is standard to refer to such a set as ‘closed’. However, this

nomenclature is not used here to avoid confusion with topological closure.
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for any subset J ⊂ SP(H)0. On the other hand, J1 ⊂ J2 implies J 0
2 ⊂ J 0

1 ; hence,
in particular, the relation J ⊂ J 00 implies that

(J 00)0 ⊂ J 0. (3.37)

Putting together Eqs. (3.36) and (3.37) we see that, for any subset J ⊂ SP(H)0

J 0 = (J 0)00. (3.38)

This means that it is easy to find subsets of non-null vectors that are full:
namely, take the polar, J 0, of any subset J of SP(H)0 (conversely, any full subset,
�, of vectors is of the form J 0 for some J—just choose J := �0). In fact, it would
be perfectly reasonable to require from the outset that the objects in our category
X are only full subsets of vectors.

This is relevant to the remark that, although the approach above gives genuine
generalised truth values of, for example, the type in Eq. (3.31), nevertheless there
is no obvious physical significance of the ‘context’ in which such truth values
arise: namely, the subset � of non-null vectors in Eq. (3.31). However, if the
objects are restricted to be full subsets of H, and hence of the form J 0 for some
J ⊂ SP(H)0, then the context is all those vectors that are ‘reducible’ with respect
to the strings in J , which does have some physical content.

3.6. A Presheaf Approach to the Normalisation Problem

The basic problem of normalisation is encapsulated in the remark that if P̂

is a projector such that P̂ |ψ〉 �= 0, then there will invariably be some projectors
Q̂ such that Q̂P̂ |ψ〉 = 0. The categorial approach in Section 3.5. is one way of
enforcing the non-appearance of the undesired null vectors under multiplication
of projection operators.

A somewhat different approach is based on the observation that although,
for any given vector |ψ〉, P̂ |ψ〉 �= 0 does not imply Q̂P̂ |ψ〉 �= 0, the equa-
tion Q̂P̂ |ψ〉 �= 0 does imply that P̂ |ψ〉 �= 0. More generally, if we have a
string Q := (Q̂q, Q̂q−1, . . . , Q̂1) for which Q̂ |ψ〉 := Q̂qQ̂q−1 · · · Q̂1 |ψ〉 �= 0,
then, necessarily, Q̂q−1Q̂q−2 · · · Q̂1 |ψ〉 �= 0, Q̂q−2Q̂q−3 · · · Q̂1 |ψ〉 �= 0 and so
on. Thus although we cannot multiply projection operators at will, we can ‘di-
vide’ by a projector in a string for which |ψ〉 is reducible. As we shall now see,
this gives another way of handling the normalisation issue.

The first step is to observe that any monoid M gives rise to a category, M̃ ,
whose objects M̃ are the elements of M , and whose arrows/morphisms are defined
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by28

Hom(m1,m2) := {m ∈ M | m1 = m2m}. (3.39)

The identity arrow 1m is defined as the unit element of M for all m ∈ M . Note that
if m : m1 → m2 (so that m1 = m2m), and m′ : m2 → m3 (so that m2 = m3m

′)
then m1 = m2m = m3m

′m and hence the composition m′ ◦ m : m1 → m3 must
be defined as m′ ◦ m := m′m.

Although SP(H)0 is only a partial monoid, the general principle still
holds, and we can construct the category ˜SP(H)0 whose objects are the el-
ements of SP(H)0—i.e., strings Q := (Q̂q, Q̂q−1, . . . , Q̂1) for which Q̂ :=
Q̂qQ̂q−1 · · · Q̂1 �= 0—and whose arrows are defined as

Hom(Q1,Q2) := {S ∈ SP(H)0 | Q1 = Q2 � S}. (3.40)

Note that since the combination law in SP(H)0 is string concatenation, there is at
most one arrow between any pair of objects. Hence this particular category is just a
partially ordered set. Note also that if S1 ∈ Hom(Q1,Q2) and S2 ∈ Hom(Q2,Q3)
then Q1 = Q2 � S1 and Q2 = Q3 � S2, so that Q1 = (Q3 � S2) � S1 = Q3 � (S2 �

S1). Thus the arrow composition in this category is such that

S2 ◦ S1 = S2 � S1. (3.41)

The empty string is a terminal object for ˜SP(H)0 since, for any ob-
ject Q, we have Hom(Q,∅) := {S ∈ SP(H)0 | Q = S} = {Q}. Furthermore, if
Q := (Q̂q, Q̂q−1, . . . , Q̂1) is any object, the unique arrow Q : Q → ∅ factors
through a series of ‘minimal’ arrows that correspond to strings of unit length (i.e.,
single projection operators):

(Q̂q, Q̂q−1, . . . , Q̂3, Q̂2, Q̂1)
(Q̂1)
−→ (Q̂q, Q̂q−1, . . . , Q̂3, Q̂2) −→

(Q̂2)
−→ (Q̂q, Q̂q−1, . . . , Q̂3) −→ · · ·

(Q̂q−1)
−→ (Q̂q)

(Q̂q)
−→ ∅ (3.42)

28 It is a matter of convention which way round the arrows are thought of as going. Thus it would be
equally permissible to define Hom(m2,m1) := {m ∈ M | m1 = m2m}, and hence Hom(m1, m2) :=
{m ∈ M | m2 = m1m}, but we have chosen the definition in Eq. (3.39) as it is the most convenient
one for the application we have in mind. Note that, in Eq. (3.39), an arrow m : m1 → m2 means
that m2 is obtained from m1 by ‘right dividing’ m1 by m (not literally, of course, as m may not be
invertible). With the alternative definition, an arrow m : m1 → m2 means that m2 is obtained from
m1 by right multiplying m1 by m.
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Now we discuss state-vector reduction in this context. This involves intro-
ducing the ‘reduction presheaf’ R on the category ˜SP(H)0. This is defined as
follows:

(i) To each object Q in the category ˜SP(H)0 we associate the space, R(Q), of
vectors that are ‘reducible’ with respect to Q: i.e., vectors |ψ〉 on which
Q acts to give a reduction Q̂ |ψ〉 that is not the zero vector. Thus29

R(Q) := { |ψ〉 ∈ H | Q̂ |ψ〉 �= 0} (3.43)

(ii) If S ∈ Hom(Q1,Q2) is an arrow from Q1 to Q2 (so that Q1 = Q2 � S)
then we define the map R(S) : R(Q1) → R(Q2) by

R(S) |ψ〉 := Ŝ |ψ〉. (3.44)

In regard to Eq. (3.44), note that if |ψ〉 ∈ R(Q1) then Q̂1 |ψ〉 �= 0. However,
Q1 = Q2 � S and hence Q̂1 = Q̂2Ŝ, and thus Q̂2Ŝ |ψ〉 �= 0. This means precisely
that Ŝ |ψ〉 ∈ R(Q2), and hence Eq. (3.44) does indeed define a map from R(Q1)
to R(Q2).

Note that if S1 ∈ Hom(Q1,Q2) and S2 ∈ Hom(Q2,Q3) then S2 ◦ S1 ∈
Hom(Q1,Q3) is defined by Eq. (3.41) as S2 ◦ S1 = S2 � S1 where, as we recall,
‘�’ denotes string concatenation. Then, if |ψ〉 ∈ R(Q1), we have

R(S2 ◦ S1) |ψ〉 = R(S2 � S1) |ψ〉 = ̂S2 � S1 |ψ〉 = Ŝ2Ŝ1 |ψ〉
= R(S2)R(S1) |ψ〉 (3.45)

so that R(S2 ◦ S1) = R(S2)R(S1), as is required for a presheaf.
Note that, in regard to the chain of arrows in Eq. (3.42), the corresponding

actions of the presheaf operators give the chain of reductions (c.f. Eq. (3.12))

|ψ〉
R(Q̂1)
−→ Q̂1 |ψ〉

R(Q̂2)
−→ Q̂2Q̂1 |ψ〉 · · ·

R(Q̂q)
−→ Q̂qQ̂q−1 · · · Q̂1 |ψ〉. (3.46)

This presheaf can be used to give a contextual, Heyting-algebra valued gen-
eralised truth structure. For example, if |ψ〉, |φ〉 are a pair of vectors in R(Q) (so
that Q̂ |ψ〉 �= 0 and Q̂ |φ〉 �= 0), we provisionally define30[

|ψ〉 = |φ〉
]

˜SP(H)0,Q
:= {S ∈ Hom(Q, ·) | Ŝ |ψ〉 = Ŝ |φ〉}. (3.47)

Note that if S ∈ Hom(Q, ·) then Q = Q′ � S for some string Q′, and there-
fore, since Q̂ |ψ〉 �= 0 and Q̂ |φ〉 �= 0, it follows that Ŝ |ψ〉 �= 0 and Ŝ |φ〉 �= 0 in

29 Equivalently, we could define R(Q) to be the set of all rays in H that are not annihilated by Q̂.
30 From a topos perspective, Eq. (3.48) is the characteristic arrow eqR : R × R → � of the diagonal

subobject � : R → R × R. Here, � denotes the presheaf of sieves on the category SP(H)0.
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Eq. (3.48) (because Q̂′ � S = Q̂′Ŝ). We can therefore normalise the states and
replace Eq. (3.47) with (and referring now to rays in the Hilbert space)[

[ |ψ〉] = [ |φ〉]
]

˜SP(H)0,Q
:={

S ∈ Hom(Q, ·) | ∃z ∈ |C, |z| = 1,
Ŝ |ψ〉
‖Ŝ |ψ〉 = z

Ŝ |φ〉
‖Ŝ |φ〉

}
(3.48)

which, of course, is not equivalent to Eq. (3.47).
The right hand side of Eq. (3.48) is contextual in the sense that it depends

on the object Q that is chosen at which to affirm the statement “[ |ψ〉] = [ |φ〉]”.
There could be other spaces R(Q′) to which both |ψ〉 and |φ〉 belong, and the

truth value in the context Q′, namely
[
[ |ψ〉] = [ |φ〉]

]
˜SP(H)0,Q′

, would not be the

same as that in the context Q.
The logical structure of these contextual truth values arises because the right

hand side of Eq. (3.48) is a sieve of arrows on Q, and hence an element of the
Heyting algebra of all such sieves on Q. This is how generalised truth values arise
in the present approach. Note that if K ⊂ H is a subset of vectors, all of which
are Q-reducible (so that none of them are annihilated by Q̂) then we can define
the valuation[

|ψ〉 ∈ K
]

˜SP(H)0,Q
:= {S ∈ Hom(Q, ·) | Ŝ |ψ〉 ∈ ŜK} (3.49)

which gives a contextual, generalised measure of the extent to which the vector
|ψ〉 (viewed as a member of R(Q)), resp. the associated ray [ |ψ〉], belongs to,
resp is a subspace of, the subspace K ⊂ R(Q). In particular, if K := HA∈�, we
arrive at the generalised valuation31

V [ |ψ〉](A ∈ �) ˜SP(H)0,Q
:= {S ∈ Hom(Q, ·) | Ŝ |ψ〉 ∈ ŜHA∈�} (3.50)

which is a sieve at Q. We thereby obtain a new candidate for a generalised truth
value for the proposition “A ∈ �” in the context Q when the state is |ψ〉 (or,
equivalently, the ray [ |ψ〉]).

4. CONCLUSION

This paper is a contribution to the long-standing question of whether the
standard quantum formalism can be given an interpretation that does not involve
measurement as a fundamental category. This is essential in quantum cosmology,

31 From a topos perspective, the right hand side of Eq. (3.49) is the ‘evaluation arrow’ evalR : R ×
P R → �. This is the topos equivalent of the fact that, in normal set theory, if J ⊂ X and if x ∈ X,
the pair (x, J ) ∈ X × PX can be mapped to the value 1 ∈ {0, 1} if x ∈ J , and to 0 ∈ {0, 1} if x �∈ J .
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and it is a very non-trivial problem. Of course, it is quite possible that the quantum
formalism itself needs changing in the cosmological context, but the working
assumption here is that this is not the case, and that we must therefore strive to
give a ‘neo-realist’ interpretation to standard quantum theory.

In the earlier series of papers by the author and collaborators it was shown
how topos theory could be used to give a generalised truth value to the propositions
in a quantum theory. The topos concerned involved presheaves over a variety of
different categories, including the category of self-adjoint operators, the category
of Boolean subalgebras of the lattice of projectors, and the category of abelian von
Neumann algebras.

In the present paper we have concentrated instead on the uses of the topos
of M-sets for various monoids M . We showed that our earlier results in classical
physics can be recovered using the monoid C∞(IR, IR), and that our earlier results
in quantum physics can be recovered using the monoid M(IR, IR).

Then we considered possible applications of the monoid L(H) of all bounded
operators on the Hilbert spaceH of the quantum theory. This led rather naturally to
thinking about the monoid of strings of projection operators, and hence ultimately
to the production of a new generalised valuation in quantum theory whose truth
values are determined by what would be state-vector reductions in the standard
instrumentalist interpretation.

If we are not worried about the normalisation issue, then the final result is
Eq. (3.21) (or Eq. (3.27) for a density matrix state ρ̂). This is a bona fide alternative
to the valuation Eq. (2.22) of our earlier work. If the normalisation problem is of
concern, then more sophisticated ideas are needed, two of which are discussed in
the present paper. This leads to the generalised valuations in Eqs. (3.32) and (3.50)
whose values lie in sieves over the chosen context/object � and Q respectively.
These results have obvious extensions to the situation where the state is a density
matrix.

It should be emphasised that the material in the present paper represents only
a preliminary investigation of the application of M-sets to quantum theory, and
much work remains to be done. In particular, it is important to see to what extent
the probabilistic predictions in standard quantum theory can be recovered from
the logical values of the generalised valuations we have discussed above. Ideally,
one would like to recover all the standard probabilistic predictions, so that the
logical structure alone is sufficient to encapsulate the generalised ontology that is
inherent in neo-realist interpretations of the present type. Hopefully, this will be
the subject of a later paper.

Another potential application of the monoid of strings of projectors is to
consistent history theory in which products of projectors play a fundamental role
(Griffiths, 1984; Gell-Mann and Hartle, 1990; Isham, 1994; Omnès, 1988); one
early attempt to discuss consistent history theory in topos language is Isham
(1997). There are also strong links to the much earlier work on Baer-∗ rings in
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quantum logic (Pool, 1975) as well as work on the use of Galois connections in
quantum theory (Butterfield and Melia, 1993).

On the other hand, whilst I was completing this paper, a preprint appeared
very recently with interesting overlaps with some of the ideas above (Lehmann
et al., 2006). This paper deals with an abstract ‘algebra of measurements’ whose
basic ingredient is a monoid of functions from a space X to itself. In particular,
what these authors call ‘cumulativity’ is related to the ideas above about using
left ideals in LM , or sieves. In general, this interesting approach can clearly be
integrated into the discussion of the present paper. These topics all deserve further
study.
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